The Role of Laboratory in the Management of Hemophilia

> Rahajuningsih D. Setiabudy Departemen Patologi Klinik FKUI-RSCM Jakarta

> > Seminar Pediatric Laboratory 29 Juli 2017

# Hemophilia

- The most frequent hereditary coagulation disorders
- Frequency 1 in 10 000 births
- Not influenced by ethnicity, geographic, socio economic
- Hemophilia A is caused by deficiency of F VIII and hemophilia B by deficiency of F IX
- X linked recessive → male are more affected, female as carrier





# Alexis



# Hemophilia in Indonesia

- Based on the population of Indonesia around 200 millions it is estimated that the number of PWH in Indonesia 20 000
- In facts only around 1800 PWH have been registered
- Reasons: under diagnosed due to many PWH died before being diagnosed or moderate and mild hemophilia in the society have not been detected

# **Clinical manifestation**

- Easy bruising in early childhood
- Spontaneous bleeding into joint and soft tissue
- Excessive bleeding following trauma or surgery
- Patients with mild hemophilia may not have excessive bleeding unless they have trauma or surgery
- Delayed bleeding

Factor VIII and F IX are not required for platelet plug formation



# Site of bleeding

#### Serious

- Joints (Hemarthrosis)
- Muscle/soft tissue
- Mouth, nose, gum
- Hematuria

Life threatening

- CNS/ Intracranial
- Gastro intestinal
- Neck/throat
- Severe trauma

#### Soft tissue bleeds and bruising

- no functional impairment
- tenderness, but
- no severe pain
- no factor needed

#### **Iliopsoas** bleeds

- flexed hip
- pain, inability to extend the leg on the affected side
- treat with a major dose of factor

#### Thigh/calf bleeds

- pain
- with/without swelling
- impaired mobility
- routine factor dose
- major factor dose if compartment syndrome is suspected

#### Neck swelling: EMERGENCY

- potential airway compromise
   treat with a major
- dose of factor

#### Deltoid/forearm bleed and bruising

- routine factor dose
- major factor dose if
- a compartment syndrome is
- suspected

#### **Buttock bleeds**

- pain
- with/without swelling
- routine factor dose
- major factor dose if the leg on the affected side exhibits tingling or swelling

# Severity of bleeding in hemophilia

| Severity | Clotting factor level<br>% activity (IU/mL) | Bleeding<br>episodes                                                           |
|----------|---------------------------------------------|--------------------------------------------------------------------------------|
| Severe   | 1% (<0.001)                                 | Spontaneous bleeding<br>predominantly in joints and<br>muscles                 |
| Moderate | 1% – 5% (0.01 -0.05)                        | Occasional spontaneous<br>bleeding. Severe bleeding<br>after trauma or surgery |
| Mild     | 5% – 40%(0.05- 0.40)                        | Severe bleeding after major trauma or surgery                                  |

## **Factor VIII (antihemophilic factor)**

- glycoprotein , not stable
- Synthesized : liver, kidney, and spleen
- Gene of F VIII located at chromosome X
- In circulation : complex with von Willebrand factor, protects from proteolytic degradation
- Function : intrinsic pathway as cofactor of F IXa in the activation of F X

## von Willebrand's factor

- multimer BM 1 20 x 10<sup>6</sup> dalton
- synthesized : endothelial cell and megakariocyte
- function :
  - carrier of F VIII, protects from proteolytic degradation
  - Adhesion and aggregation of platelet, as a bridge between platelet and subendothelial tissue





- Synthesized: liver
- Vitamin K dependent
- Function : in the intrinsic pathway, activate
  F X → F Xa



# The role of Laboratory in the Management of Hemophilia



# **Diagnosis of hemophilia**

Anamnesis : bleeding history, family history

Physical examination: hematoma, hemarthrosis

Laboratory diagnosis : ??

## Laboratory diagnosis of hemophilia

Platelet count : normal no alteration in the production and consumption of platelet Bleeding time : normal F VIII and IX are not required in the hemostatic plug formation

## Laboratory diagnosis of hemophilia

- PT normal since PT assess the extrinsic and common pathways.
- APTT prolonged because APTT assess the intrinsic and common pathways.
  - F VIII and IX function in the intrinsic pathway
- TT normal because TT only assess the changes of fibrinogen to fibrin

# **Screening for diagnosis**

| Condition                    | PT     | APTT                | BT        | Platelet<br>count |
|------------------------------|--------|---------------------|-----------|-------------------|
| Hemophilia<br>A or B         | normal | prolonged           | normal    | normal            |
| Von<br>Willebrand<br>disease | normal | Normal or prolonged | prolonged | Normal or reduced |
| Platelet<br>defect           | normal | normal              | prolonged | Normal or reduced |

## Screening and diagnosis of hemophilia





# Diagnosis of Hemophilia and DD/ hemophilia A or B

- Thromboplastin Generation Time
- APTT substitution test
  - Based on the difference between F VIII and F IX properties.
  - F VIII is consumed during coagulation process  $\rightarrow$
  - F VIII is absent in serum.
  - F IX is vitamin K dependent factors, is adsorbed by Ba(SO4) or Al (OH)<sub>3</sub>  $\rightarrow$  F IX is absent in adsorbed plasma
- Factor VIII/IX Assay

## Methods for Factor VIII assay

Clotting Assay for Factor VIII :

- One stage
- Two stage

Chromogenic substrate

## **One-stage Clotting Assay for F VIII**



**Two-stage Clotting Assay for Factor VIII** 

1<sup>st</sup> stage Conversion F X to activated F X





# Factor VIII assay by Chromogenic substrate



# **Indication of doing factor VIII assay**

- To determine diagnosis of hemophilia
- To monitor the activity of F VIII before and after surgery
- To test the quality of cryoprecipitate. AABB guidelines recommend F VIII content in cryoprecipitate of 80 Unit per bag
- To detect carrier by phenotypic method.
  Ratio F VIII/vWF < 0.7 gives 80% chance being carrier</li>

### ACTIVITY OF F VIII

- Normal range : 50 150 %
- Severe Hemophilia A : < 1 %</p>
- Moderate Hemophilia A : 1 5 %
- Mild Hemophilia A : >5 40 %
- von Willebrand disease: normal or low
- F VIII 1 acute phase reactant

risk factor of thrombosis

### ACTIVITY OF F IX

- Normal range : 50 150 %
- Severe Hemophilia B : <1%</p>
- Moderate Hemophilia B : 1 5 %

>5 - 40 %

Mild Hemophilia B :
 Low :

deficiency of vit. K Vitamin K antagonist liver disease bile obstruction

## DD/ Hemophilia A and hemophilia B

#### Hemophilia A

- APTT prolonged
- F VIII
- FIX normal
- TGT/diff. APTT using plasma : abnormal

### Hemophilia B

- APTT prolonged
- F VIII normal
- F IX 📕
- TGT/diff. APTT using serum : abnormal

## DD/ Hemofilia A dan von Willebrand's d.

#### Hemofilia A

- FVIII
- Bleeding time : N
- vWF level : N
- vWF : Ristosetin
  cofactor : N

- Von Willebrand's d.
- FVIII N/
- Bleeding time prolonged
- vWF level
- vWF : Ristosetin
  cofactor

# If laboratory facility is not available

|                              | <b>Clotting time</b> | <b>Bleeding time</b> |
|------------------------------|----------------------|----------------------|
| Hemophilia                   | Prolonged            | normal               |
| von<br>Willebrand<br>disease | normal               | Prolonged            |

# **Carrier detection**

# Pattern of inheritance of X linked



#### **STATUS OF WOMEN IN HEMOPHILIA FAMILY**

Obligat carrier

- Non carrier
- Possible carrier

# **Carrier of hemophilia**

- Daughters of PWH are obligate carrier
- Most carrier are asymptomatic
- A few carrier may have F VIII/IX level in the hemophilia range (mostly mild), very rare in moderate or severe (Lyonisation)
- Carrier with low level of F VIII/IX → bleeding manifestation→ treatment
- Menorrhagia is common manifestation
- Immediate female relative of PWH, should have F VIII/IX checked

# **Carrier Detection**

#### Phenotypic

- Pedigree analysis
- F VIII/vWF Ratio
- Bivariate Linier
  Discriminant Analysis

#### Genotypic

- Direct detection of mutation
- Polymorphism gene tracking

#### **Bivariate Linear Discriminant Analysis**

Input data from possible carrier  $\alpha$  = age in year  $\beta$  = blood group group O = 0 Non O = 1  $\gamma = vWF Ag in IU/mL$  $\delta = VIII$  in IU/mL  $\pi$  = genetic probability of carriership Input data from non carrier reference group  $\mu_x$  = mean of Ln of vWF:Ag level in IU/mL  $\mu_v$  = mean of Ln F VIII activity in IU/mL Calculate for possible carrier  $X = \ln(\gamma) - \mu_x$  $Y = \ln(\delta) - \mu_v$ 

#### Bivariate linear discriminant analysis (cont)

Calculate the coefficient for modified discriminant:

- $a = -0,0955 0,0156\alpha + 0,000196\alpha^2 + 0,0298\beta$
- $b = 0,649 0,00184\alpha + 0,000314\alpha^2 + 0,117\beta$

Calculate predicted means of the discriminants for carrier and non carrier:

- $c = -0,391 0,00571\alpha + 0,0001\alpha^2 0,0648\beta$
- $d = -0,347 0,00171\alpha + 0,0000473\alpha^2 + 0,0754\beta$

Calculate the Odds ratio:

- e = ax + by
- = 4,28 (e-c)
- g = 7,97 (e-d)
- h = 0.623 + 0.5(f+g)(f-g)

LR = exp (-h) , the Odds ratio favouring carriership

Calculate final probability of carriership

 $Pc = \pi LR/(\pi LR + 1 - \pi)$ 

# **Complication Detection**

# **Chronic Complication of Hemophilia**

- Musculoskeletal:
  - Chronic hemophilic arthropathy
  - Contractures
  - Pseudotumor formation (soft tissue and bone)
  - Fracture
- Inhibitor of F VIII/IX
- Transfusion-related infection : HIV, HBV, HCV, parvovirus B19

# **Inhibitor in hemophilia**

- Incidence in severe hemophilia A 20 % 33%
- Incidence in hemophilia B 1% 4%
- Plasma derived products: 80% high responding type, very few temporary
- Recombinant F VIII : < 50% high responding type, 1/3 temporary
- Laboratory test : Bethesda inhibitor assay

# **Inhibitor F VIII**



# **Comprehensive Care Team for Hemophilia**

- Team comprise: hematologist (pediatriciant and adult) clinical pathologist, specialist in physical medicine and rehabilitation, orthopedic surgeon, dentist, psychiatrist, nurse
- Function of the team:
  - Coordinate care and service to patients
  - Provide education to patient and family members
  - Documentation of treatment and measurement of longterm outcome especially musculoskeletal function
  - Conduct research to improve management

# Management for Hemophilia in Indonesia

- Since 1997 Comprehensive Care Team for Hemophilia was established in Dr. Cipto Mangunkusumo Hospital, Jakarta
- Meeting to solve the problem in the patient management, donation from WFH
- Surgery: TKR, implant in hip surgery
- We also have Indonesian Hemophilia Society: PWH, family, doctors, nurse, social workers.

Thank you