Background

• Neonatal sepsis:
 – Early-onset
 – Late-onset
• Early-onset: mostly premature neonates
 – Within 24 hours → 85%
 – 24-48 hours → 5%
 – 48-72 hours → < 5%
• Microorganisms from mother → acquires as passes thru birth canal
Microbes common in early-onset

• Group B *Streptococcus*
• *Escherichia coli*
• Coagulase-negative *Staphylococcus*
• *Haemophilus influenzae*
• *Listeria monocytogenes*
• Most common → pneumonia
Late-onset Sepsis

• Occurs > 4 days after birth up to 90 days
• Microbes mostly causing:
 – Coagulase-negative *Staphylococcus* (CNS)
 – *Staphylococcus aureus*
 – *Escherichia coli*
 – *Klebsiella sp*
 – *Pseudomonas sp*
 – *Enterobacter sp*
 – *Candida sp*
 – Group B *Streptococcus* (GBS)
 – *Serratia sp*
 – *Acinetobacter sp*
Late-onset Sepsis

- Increase CNS (cogulase-negative Staph) sepsis
- Colonization of infant skin, respiratory tract, conjunctivae, GI tract, umbilicus → from environment
- Port of entry → catheters (vascular, urine), indwelling lines
- Contact with caregivers, healthcare workers
- Most common → bacteremia, meningitis

dalima.astrawanata@gmail.com/HKKI/Juli/2017
Staphylococcus epidermidis

- CN *Staphylococcus* → normal skin flora
- CNS → increasingly cause late-onset and nosocomial sepsis
- Adhere to plastic iv catheters, shunts → by bacterial polysaccharide capsules
- Capsules formed between microbes and catheter → prevent phagocytosis and C3 deposition
- Biofilm formed on catheters → slime produced by organisms extracellular material → acts as barrier to host defence and antimicrobial action
Cellular Immunity

- Neonatal polymorphonuclear (PMN) :
 - Deficient in chemotaxis, killing capacity
 - Decreased adherence to endothelial blood vessels → decreased ability to migrate into tissues
 - Failure to degranulate
 - Limited capacity of phagocytosis
 - Diminished bone marrow response → neutrophil reserves depleted
 - Impaired macrophage chemotaxis
 - Decreased cytokine production → decreased T-cell production → decreased B-cell stimulation and granulocyte proliferation
Humoral Immunity

- Some preformed Ig → nonspesific placental transfer from mother, mostly occur in older gestation
- Prematurity → increased low level immunoglobulin
- IgM synthesized in utero → 10 weeks gestation, generally low at birth
- IgG, IgE → synthesized in utero
- Most IgG → acquired from mother during late gestation
- IgA not secrete until 2-5 weeks post birth
- Response to bacterial polysaccharide Ag diminished during 2 years of age
Complement

• Complement production ➔ as early 6 weeks gestation ➔ varies widely
• Deficiencies in alternative pathway > classic pathway
• Mature complement activity ➔ aged 6-10 months
• Decreased levels fibronectin ➔ assist neutrophil adherence and opsonic function
• Reduced opsonic efficiency ➔ Group B Strep, E.coli, Streptococcus pneumoniae
Early-onset Neonatal Sepsis

• Risk factors:
 – Maternal GBS colonization (untreated)
 – Premature rupture of membrane (PROM)
 – Prolonged rupture of membrane
 – Prematurity
 – Low birth weight
 – Maternal UTI (urinary tract infection)
 – Chorioamnionitis
 – Meconium staining
 – Birth asphyxia
Early-onset Neonatal Sepsis

• Microorganisme commonly associated:
 – Group B *Streptococcus* (GBS)
 – *E. coli*
 – Coagulase-negative *Staphylococcus* (CNS)
 – *H. influenzae*
 – *L. monocytogenes*
Late-onset Neonatal Sepsis

• Risk factors:
 – Prematurity
 – Central Venous Catheterization (CVC) > 10 days
 – Nasal cannula or continuous positive airway pressure (CPAP)
 – H2-receptor blocker or proton pump inhibitor
 – Meningitis
 – GI tract pathology
Late-onset Neonatal Sepsis

• Microorganisms commonly associated:
 – GBS (36%)
 – *E.coli* (31%)
 – *Listeria sp* (5-10%)
 – *Streptococcus pneumoniae*
 – *Staphylococcus aureus*
 – *Staphylococcus epidermidis*
 – *H. influenzae*
 – *Pseudomonas sp*
 – *Klebsiella sp*
 – *Serratia sp*
 – *Enterobacter sp*
 – *Proteus sp*
Laboratory Studies

• Complete blood count:
 – Differentiate sepsis vs delivery stress (non-specific)
 – Detect shift to the left
 – I/T ratio (immature vs total neutrophil) \(\rightarrow \)
 Normal: -24hrs < 0,16 -60 hrs < 0,12
 Limited positive predictive value

• White blood cell counts:
 – Low positive predictive value \(\rightarrow \) not infected with abnormal WBC
 – Normal WBC in 50% culture positive
Laboratory Studies

• Platelet count:
 – Thrombocytopenia < 100,000/uL → sign of sepsis, can last up to 3 weeks
 – Infant w/ sepsis → 10 – 60% thrombocytopenia
 – Mean Plt Volume (MPV), Plt Distribution Width (PDW) higher > after 2-3 days (newly formed)

• CRP (C-reactive protein):
 – Rise secondary to → increased macrophage, IL-6, T-cell
 – Rise within 4-6 hrs of infection onset → abnormal rise 24 hrs → peak 2-3 days
 – Serial study → assess antibiotic response, relapse
Laboratory Studies

- PCT (Procalcitonin):
 - Propeptide of calcitonin \rightarrow produced in liver, monocytes
 - More sensitive $>$ CRP
 - More specific to bacterial vs viral
 - Useful after age $>$ 24 hrs
 - Elevated in non sepsis \rightarrow RDS (respiratory distress syndrome, infants of DM mother)
 - Rapid TAT (turn around time) $<$ 2 hrs \rightarrow clinical useful
Laboratory Studies

- Coagulation studies:
 - Signs of bleeding → gastric bleeding, intravenous puncture sites
 - To detect possibilities of DIC (disseminated intravascular coagulation)
 - Abnormalities in prothrombin time (PT), partial thromboplastin time (APTT), fibrinogen, D-dimer

- Immunoglobulin M:
 - Elevated IgM → suggest intra uterine infection

- Cytokine:
 - IL-6, IL-8 → useful in combination and serial measurements
Laboratory Studies

- CSF (Cerebrospinal fluid) analysis:
 - Elevated WBC predominantly PMNs
 - GBS infection \rightarrow 29% within normal range
 - Gram negative meningitis > 95% increased
 - Elevated protein level
 - Increased > 80% \rightarrow Gram negative meningitis
 - Normal 50% \rightarrow GBS meningitis
 - Decreased glucose concentration
 - Does not necessarily hypoglycemia
 - More severe \rightarrow Gram negative infection, late-onset sepsis
Laboratory Studies

• Culture :
 – Aerobic culture → within 48 hours positive
 – Anaerobic culture → abscesses, bowel involvement, massive hemolysis, refractory pneumonia
 – Single site blood sampling → effective for neonates sepsis
 – Urine culture → useful in late-onset sepsis

• HSV (Herpes simplex virus) PCR testing :
 – Useful for negative culture, not responding to antibiotics
Should not be based on single test

- Based on:
 - Culture and microscopic results
 - Maternal risk factors
 - Intrapartum risk factors
 - Cerebrospinal fluid results
 - Complete blood count, differential count
 - CRP, PCT serial → to see trends
 - Clinical progress → w/ treatment for 7-10 days
Conclusion

• Management and diagnostic of Neonatal sepsis should consider many aspect such as:
 – Maternal risk factors
 – Intrapartum neonatus risk factors
 – Clinical signs of neonatus and mother
 – Etiology and patogenesis of neonatal sepsis
 ➔ besides Laboratory examinations results
• Trends of Lab results is important to evaluate treatment or progress of clinical conditions
THANK YOU